- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bannon, Peter R (1)
-
Clark, Joseph P (1)
-
Lee, Sukyoung (1)
-
Park, Mingyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity$$\epsilon$$ . The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing$$\epsilon$$ . While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.more » « less
An official website of the United States government
